Pullback Attractors for the Non-autonomous FitzHugh-Nagumo System on Unbounded Domains

نویسنده

  • Bixiang Wang
چکیده

The existence of a pullback attractor is established for the singularly perturbed FitzHughNagumo system defined on the entire space Rn when external terms are unbounded in a phase space. The pullback asymptotic compactness of the system is proved by using uniform a priori estimates for far-field values of solutions. Although the limiting system has no global attractor, we show that the pullback attractors for the perturbed system with bounded external terms are uniformly bounded, and hence do not blow up as a small parameter approaches zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Random Attractors for the Stochastic FitzHugh-Nagumo System on Unbounded Domains

The existence of a random attractor for the stochastic FitzHugh-Nagumo system defined on an unbounded domain is established. The pullback asymptotic compactness of the stochastic system is proved by uniform estimates on solutions for large space and time variables. These estimates are obtained by a cut-off technique.

متن کامل

Pullback Attractors for Reaction-diffusion Equations in Some Unbounded Domains with an H-valued Non-autonomous Forcing Term and without Uniqueness of Solutions

The existence of a pullback attractor for a reaction-diffusion equations in an unbounded domain containing a non-autonomous forcing term taking values in the space H, and with a continuous nonlinearity which does not ensure uniqueness of solutions, is proved in this paper. The theory of set-valued non-autonomous dynamical systems is applied to the problem. Dedicated to Peter E. Kloeden on his 6...

متن کامل

Periodic Random Attractors for Stochastic Navier-stokes Equations on Unbounded Domains

This article concerns the asymptotic behavior of solutions to the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. First we introduce a continuous cocycle for the equations and then prove the existence and uniqueness of tempered random attractors. We also characterize the structures of the random attractors by comp...

متن کامل

Pullback attractors for non-autonomous reaction-diffusion equations in Lp

We study the long time behavior of solutions of the non-autonomous Reaction-Diffusion equation defined on the entire space Rn when external terms are unbounded in a phase space. The existence of a pullback global attractor for the equation is established in L(R) and H(R), respectively. The pullback asymptotic compactness of solutions is proved by using uniform a priori estimates on the tails of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008